Immunobiosensor chips for detection of Escherichia coil O157:H7 using electrochemical impedance spectroscopy.
نویسندگان
چکیده
Impedance biosensor chips were developed for detection of Escherichia coli O157:H7 based on the surface immobilization of affinity-purified antibodies onto indium tin oxide (ITO) electrode chips. The immobilization of antibodies onto ITO chips was carried out using an epoxysilane monolayer to serve as a template for chemical anchoring of antibodies. The surface characteristics of chips before and after the binding reaction between the antibodies and antigens were characterized by atomic force microscopy (AFM). The patterns of the epoxysilanes monolayer, antibodies, and E. coli cells were clearly observed from the AFM images. Alkaline phosphatase as the labeled enzyme to anti-E. coli O157:H7 antibody was used to amplify the binding reaction of antibody-antigen on the chips. The biocatalyzed precipitation of 5-bromo-4-chloro-3-indolyl phosphate by alkaline phosphatase on the chips in pH 10 PBS buffer containing 0.1 M MgCl2 increased the electron-transfer resistance for a redox probe of Fe(CN)6(3-/4-) at the electrode-solution interface or the electrode resistance itself. Electrochemical impedance spectroscopy and cyclic voltammetric method were employed to follow the stepwise assembly of the systems and the electronic transduction for the detection of E. coli. The biosensor could detect the target bacteria with a detection limit of 6 x 10(3) cells/mL. A linear response in the electron-transfer resistance for the concentration of E. coli cells was found between 6 x 10(4) and 6 x 10(7) cells/mL.
منابع مشابه
Label-Free 3D Ag Nanoflower-Based Electrochemical Immunosensor for the Detection of Escherichia coli O157:H7 Pathogens
It is highly desirable to develop a rapid and simple method to detect pathogens. Combining nanomaterials with electrochemical techniques is an efficient way for pathogen detection. Herein, a novel 3D Ag nanoflower was prepared via a biomineralization method by using bovine serum albumin (BSA) as a template. It was adopted as a sensing interface to construct an electrochemical bacteria immunosen...
متن کاملElectrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin
Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficien...
متن کاملLabel-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria.
Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyc...
متن کاملPCR detection of Escherichia coli O157:H7 directed from slaughtered cattle in Shiraz, Iran
Escheric hia coli O157:H7 lives in the intestines of healthy cattle, and can contaminate meat during slaughtering pr actices . Detection of the low infectious dosage of bacterium requires a sensitive method. We developed polymerase chain reaction (PCR) assays to detect the gene Stx2 irrespective of the bacterial serotype. In this study, the detection limit of the PCR protocol in detecting Stx...
متن کاملDetection of Viable But Non-Culturable State of Escherichia coli O157:H7 Using Reverse Transcription PCR
Background and Aims: Many bacteria including Escherichia coli may enter into a viable but non-culturable (VBNC) state under unfavorable stresses, which are unable to be detected by culture-based methods. In this study, the use of Reverse Transcription PCR (RT-PCR) for detection of VBNC state of E. coli O157:H7 was investigated. Materials and Methods: Escherichia. coli O157:H7 was inoculated i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 74 18 شماره
صفحات -
تاریخ انتشار 2002